
Energy efficiency in residential lighting

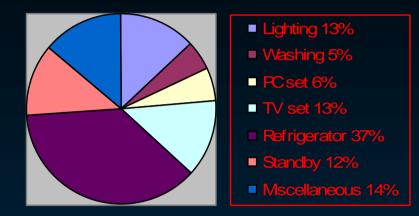
Dr. Florin POP, professor Technical University of Cluj-Napoca, Romania

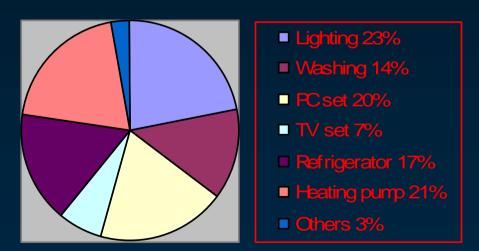
Residential energy consumption

- Residential buildings an important energy consumer in EU
- Lighting = Energy: many than 30x10⁹ electric lamps in function around the world consume more than 2100 TWh annual (10-15% form the global energy production); 28% from this is consumed in Residential Lighting (Mills, 2003).

Lighting functions

The primary function of an electric lighting installation is to enable people to see, in order to live in their houses or to perform their professional tasks comfortably and safely. For avoiding an undesirable outcome from an electric lighting installation which achieves energy-efficiency at the cost of lighting, but makes people uncomfortable and puts their safety at risk, it is necessary to consider lighting quality as well as energyefficiency when designing or evaluating lighting.

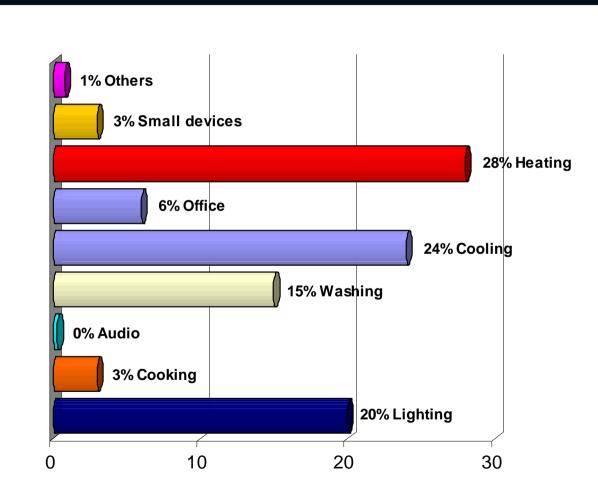

Residential lighting requirements


- **visual** moving quickly and safely from one space to another, properly seeing people and objects
- **flexibility** in multipurpose spaces living rooms and kitchens
- **comfortable rest** of stressed people
- pleasant living environments
- improving energy not conflict with such requirements
- economically justified to be accepted by the residential market.
- elder people affected by limited physical capabilities more quantity and quality of light.

quality of lighting must be high

Home appliances

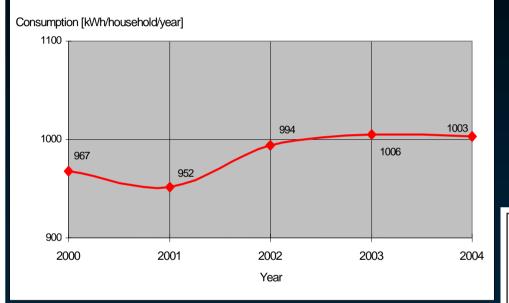
Example of mapping of the end-use consumption in a home – Denmark [4]



Energy consumption of some household electric appliances – Romania [2]

Home appliances

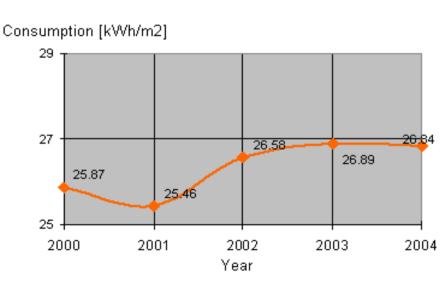
CREFEN survey - 2007



Home lighting consumption

A relatively recent study [13] establishes that lighting for kitchen, living room, bathroom and exterior areas consumes approximately 50% of the total lighting consumption. 25% of the lamps installed in homes consume 75% of the total lighting energy.

Approximately 20% of energy is consumed by portable lighting luminaires, powered thgrough wall outlets.


Analysis of electric lighting energy consumption in the residential sector in Romania

Household consumption per m²

the average value of 37.39 m² per household has been considered

Average energy consumption 2000-2004

The mounting of a single CFL in each household of Romania would lead to a decrease of the household electric energy consumption of around 45,246 MWh/year.

The estimation has been realized on a theoretical evaluation, based on 2,036,000 MWh/year (the household electric lighting energy consumption - 2004) divided to 9 (average number of lamps per household in Romania) and then to 5 (the ratio between the electric energy consumption of a CFL and a GSL with the same luminous flux).

This value corresponds to a saving in the CO_2 emissions of about **2.5 kTones CO_2** (1 kWh = 0.0536 kg CO_2 according to the average values considered for European countries).

Two natural barriers to implement an energy efficient lighting

Economical

level of people income versus the cost of modern lamps

Educational lack of lighting knowledge and media programmes.

Energy strategies

The energy efficiency of a lighting installation depends on:

- components of the system lamps, ballasts , luminaires
- its time of use
- control system;
- daylight availability
- proper design
- maintenance program

Light sources

Incandescent, tungsten-halogen, florescent and compact fluorescent lamps

Tungsten-halogen sources provide whither light, longer life and higher efficacy than standard incandescent lamps.

Fluorescent lamps – linear, ring, quadrant shapes - available in versions with very good color rendering properties, are appropriate in kitchens, bathrooms, utility rooms and any other space.

Compact fluorescent lamps - economic energy-efficient alternative to standard incandescent lamps

- high initial cost
- complains about colour qualities of light emitted compared to incandescent lamps.

Customer Complains

CFLs do not give ENOUGH lighting * Start up time * Wrong info about equivalence

CFLs do not give GOOD lighting

CFL's disadvantages [9]

- CFLs are often physically larger than the incandescent bulbs
- A less optimal lighting pattern
- The light is generally cooler
- May produce an annoying 120 Hz (or 100 Hz) flicker.
- Ordinary dimmers cannot be used
- Should not be used with illuminated switches, electronic timers, or any other
- Light output may depend somewhat on mounting orientation
- Some CFLs come on instantly while others may have a delay of a up to a second or more
- There will usually be a warm-up time of a few seconds
- Light output will decline slightly
- Operation at cold temperatures may result in reduced light output
- Should not be use in an unenclosed fixture outdoors
- Operating in enclosed fixtures or various orientations may result in reduced reliability
- There may be an audible buzz from the ballast
- May produce Radio Frequency Interference
- Will break as easily as a 25 cent incandescent.

CFL's disadvantages [9]

- CFLs are often physically larger than the incandescent bulbs
- A less optimal lighting pattern
- The light is generally cooler
- May produce an annoying 120 Hz (or 100 Hz) flicker.
- Ordinary dimmers cannot be used
- Should not be used with illuminated switches, electronic timers, or any other
- Light output may depend somewhat on mounting orientation
- Some CFLs come on instantly while others may have a delay of a up to a second or more
- There will usually be a warm-up time of a few seconds
- Light output will decline slightly
- Operation at cold temperatures may result in reduced light output
- Should not be use in an unenclosed fixture outdoors
- Operating in enclosed fixtures or various orientations may result in reduced reliability
- There may be an audible buzz from the ballast
- May produce Radio Frequency Interference
- Will break as easily as a 25 cent incandescent.

LIGHT FAIR Las Vegas 2006 [10]

The big news in CFLs - a new standard base for CFL fixtures that allows bulbs and fixtures to be interchanged freely.

This overcomes a major obstacle for widespread use of CFLs (if you buy a 26 W fixture, you must use a 26 W CFL).

Consumers who purchase fixtures that use new standard components will be able to change out lamps/ballasts of varying wattage and lumen output to meet their specific lighting needs, ranging from 9 to 27 W.

The switch is just as easy as it's been to screw different wattage incandescent light bulbs in the same fixture.

Incandescent lamps shift-out

- Energy Independence and Security Act of 2007

 USA
 - no incandescent bulbs manufactured and imported
 2012 (100 W), 2013 (75 W), 2014 (40 and 60 W)
- 2008 EU directive to change light bulbs in residential sector
 - with the effect on the production of new bulbs
 - actions specified by each country
- New CFL quality charter 2008
 - comparison CFL/GLS previous 1:5 ratio, a new 1:4 is indicated
- 2020 EU Vision
 - a target of 20% energy efficiency savings, requiring homes, offices and streets to switch to energy saving lighting

Luminaires

Information for a residential luminaire

- Price
- Style shape and color to match users taste or home décor
- Type, power and number of lamps
- Performance

Owner selection

Decorative aspect or style criteria

The lack of performance information is a major barrier in promoting energy-efficient residential luminaires

Luminaires with CFLs for residential use

Controls

Aims of a lighting control system

to choose the desired lighting level
to improve the lighting energy efficiency

Basic strategies for control lighting

- time based control common spaces
- daylight linked control photocell too expensive
- occupancy linked control sensors
- localized switching on/off switching or dimming

Design of energy efficient lighting

A few basic requirements:

- more light is not necessarily a positive element; visual performances of an individual depend both on the light quantity and quality;
- selection of a lighting system appropriate to the room destination;
- use of localized lighting wherever possible and reduction of the general illumination level;
- use of modern lighting technologies and of adequate control means;
- use of natural light.

Some of the methods to obtain energy efficient interior lighting:

- installation of luminaires with fluorescent lamps for all relevant positions (ceiling or wall mounted) where a use of more than two hours daily is assumed - kitchen or living room, bathrooms, halls or bedrooms;
- use of CFL in dedicated luminaires instead of mounting them in GLS dedicated luminaires; this would encourage the use of CFL throughout the duration of existence of the building;
- use of CFL for portable luminaires with a use of more than two hours per day;
- use of luminaires with the energy label of type A ENERGY STAR;
- use of presence sensors to open and close the light as needed;
- use of light colors for the interior walls, with the purpose of reducing the electric lighting.

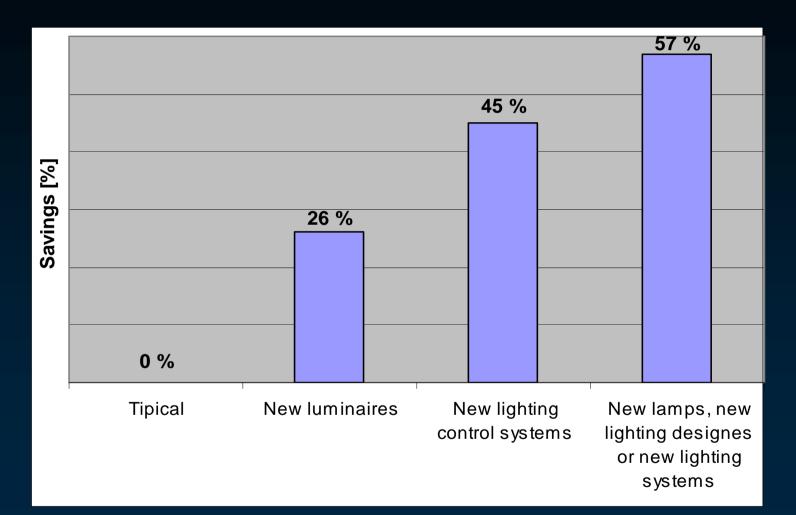
Electric lighting design based on minimal installed power

- The homes design norms NP057-02 recommend the *specific installed electric power* for homes lighting at a value of minimum 20 W/m² of floor surface. This value is valid for the use of incandescent lamps in rooms lighting.
- When realizing an energy efficient lighting system that uses CFLs for rooms lighting, the light flow emitted by these lamps is about four times larger than that from incandescent lamps. Thus, the specific installed electric power for homes lighting has to be reduced about four times, at a value of minimum 5 W/m² of floor surface.
- With these values the average illumination level on the working plane for the general illumination of the room of about 100 lx is obtained.

Normed values of average illumination in particular home rooms [Romanian norm]

Room Sleeping room Living room	
Bathroom	
Kitchen	

Hall Staircase Garage Garbage collector Underground room

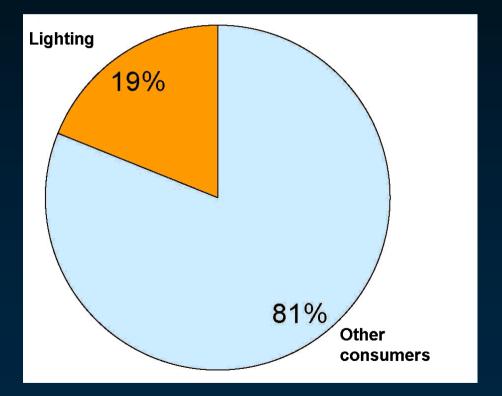

Type of lighting

general general local-reading local-knitting general local general local general general general general general

50 - 75

Illumination, Ix

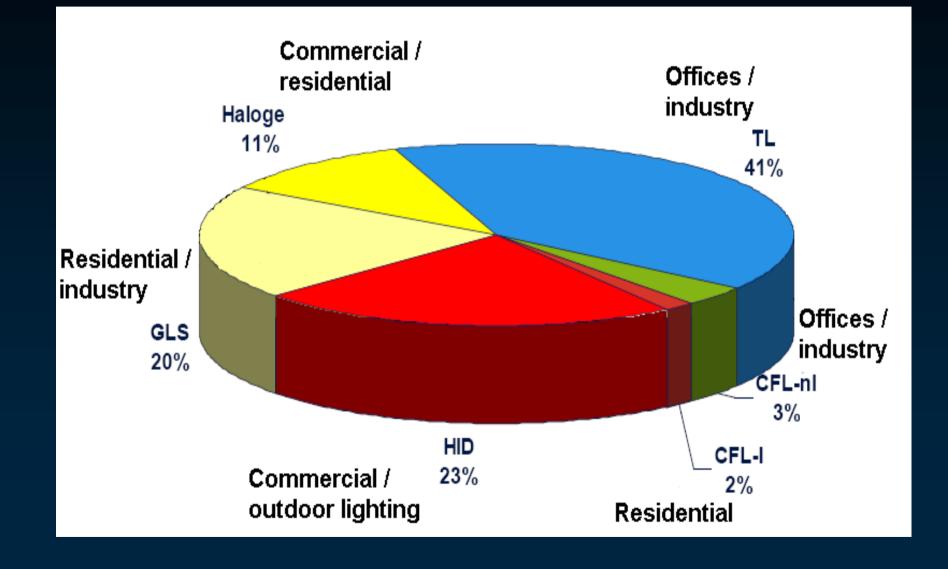
Alternative lighting systems [5]



Savings using alternative lighting systems versus the old conventional ones [?]

Lighting

An important quota from the world consumption of energy


- Lighting represents 19% of the world energy consumption
- The price of electricity is higher and higher
- The new technologists assures a high-quality lighting and the reduction of the CO₂ emissions

Source: Elektrbel

CO₂ emissions

Europe

The unused potential of the new lighting technologies

 About 2/3 of the lighting systems installed in the European Union are using old technologies

ESTIMATED SAVINGS

- 14 milliards Euro the annually electricity costs
- 59 million tones the annually CO₂ emissions
- 196 million barrels petroleum annually
- The equivalent of 67 electricity power plants

Opportunities

Energy savings gained by replacing the old lighting systems

Application	Energy savings	Reduction of CO ² emissions
Outdoor	HPL	109kg CO ₂
Commercial	Halogen PAR 30 80% MASTER Colour CDM	115kg CO ₂
Offices / industry	TL8 61% T5 with HF Gear	77kg CO ₂
Residential	GLS SSS CFLI	34kg CO ₂

Opportunities - homes illumination

- About 2 bilion (energy inefficient) incandescent sources are sold annually
- High potential to reduce energy consumption

Opportunities - homes illumination

Potential savings

- 5-8 billion Euro of energy costs
- 20 billion tons CO₂ emissions/year
- 74 billion barils of oil per year
- equivalent of 25 electric energy production units

Opportunities - homes illumination

- European initiative
- Homes illumination
- Dominated by incandescent sources
- Uses 4-5 times more energy than energy efficient sources
- 95% loses as heat

Opportunities - homes illumination Replacing the incandescent lamps

• Energy cost ~0,12 Euro/KWh

	Incandescent lamp GLS 100W	Philips Ambiance 20W Energy saving CFL
Price	€ 0.50	€ 9.00
Working hours	1000	8000


Opportunities - homes illumination Replacing the incandescent lamps

	GLS 100W	Ambiance 20W
Energy cost € / an	€ 0.12 x 100 kWh = € 12.00	
Energy consumption for 8000h	(8000h x 100W) / 1000 = 800 kWh	````
Energy cost for 8000h	800 kWh x € 0.12 ₌ € 96.00	160 kWh x € 0.12 = € 19.20
Total costs (lamp + energy)	8 x € 0.50 + € 96.00 = € 100	
Payback time		€ 9.00 – (8 x € 0.50) / (€ 12.00 – €2.40) = 0.52
CO₂ emissions for 8000h	344	69

Opportunities - homes illumination Replacing the incandescent lamps

- Payback time less than 1 year
- 80% energy savings

Barriers

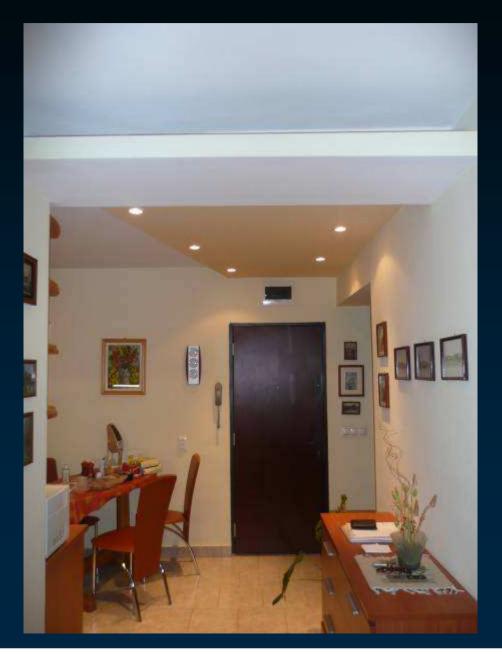
of installing a new and efficient lighting system

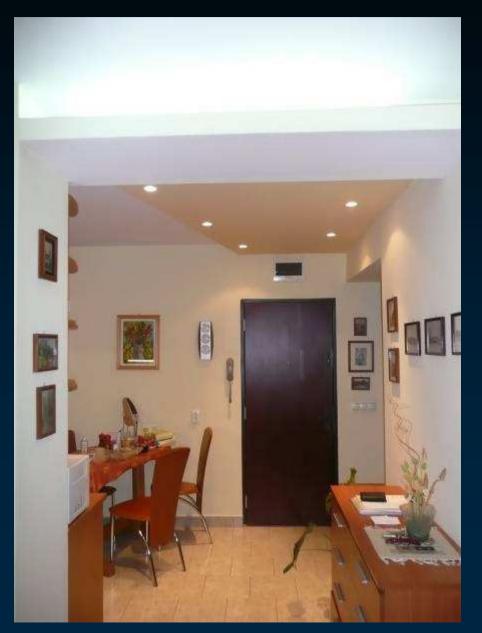
- Information
 - The users don`t know the latest technologies
 - The low interest of the users for the lighting
 - The people who can take decisions are not lighting experts

- Costs
 - Higher implementation costs are leading to major energy and running cost savings

Examples

Examples





References

[1] ALEXANDRU, Adriana. 2005-2008. coordinator. CREFEN. Informatic integrated system for energy efficiency and saving in residential sector – CEEX programme. Contract C608/2005.

[2] BEU D., coordinator. Study concerning the energy efficiency of the residential electric appliances – SEEC – Universitatea Tehnica Cluj-Napoca (RO), grant Gr 6113/2000

[3] Di FRAIA L, 2000, *Residential lighting: some quality and energy aspects*, Ingineria Iluminatului, nr. 5, 2000, pg. 19-30

[4] KOFOD, C. End-use analysis on domestic lighting, Proceedings from the 5th International Conference on Energy-Efficient Lighting, Nice, 2002

[5] LESLIE RP, CONWAY Kathryn M., 2000, *The Lighting Pattern Book for Homes*, Lighting Research Center, Reansealer Polytechnic Institute

[6] LEWIS J.O., coordinator. EnerBuild RTD Network - FP5 programme, 2001-2003.

[7] LOE, J., JONES, N., A new and energy efficient approach to domestic lighting, Proceedings from the 5th International Conference on Energy-Efficient Lighting, Nice, 2002

[8] POP, F., BEU, D. Residential Energy Efficient Lighting, promoting actions under the frame of national and European projects. Proceedings of the 26th Session of the CIE. Beijing. vol. 1, paper No. 1B-P15. page D3-49, 4-11 July 2007

[9] Sam's F-Lamp FAQ Fluorescent Lamps, Ballasts, and Fixtures, Principles of Operation, Circuits, Troubleshooting, Repair Version 2.12 (1-Mar-06), Copyright © 1994-2006 Samuel M. Goldwasser

[10] ŞUVAGAU, Cr. 2006. Lighting in the New World. LIGHTFAIR 2006. Ingineria Iluminatului. vol. 8, No. 17, Summer 2006.

[11] ZISSIS, G. 2008. coordinator. 2nd Technical Progress Report (TPR2) European Efficient Residential Lighting Initiative – EnERLIN. EIE "Intelligent Energy – Europe". programme grant IE/05/176/SI2.419666. [12] Statistic data 2003. Romanian Statistic National Institute.

[13] Philips, Energy efficient lighting, Cuneşteanu C., April 2008

[14] Market Research Report, Energy Efficient Lighting in New Construction - Residential New Construction Lighting Program, Ecos Consulting, Benya Lighting Design, Rising Sun Enterprises, report #02-100, May, 2002, Portland, Oregon SUA Dr. Florin POP, professor Technical University of Cluj-Napoca Romania http://users.utcluj.ro/~florin E-mail: florin.pop@insta.utcluj.ro